Mechanisms of B cell Synapse Formation Predicted by Stochastic Simulation
نویسندگان
چکیده
The clustering of B cell receptor (BCR) molecules and the formation of the protein segregation structure known as the “immunological synapse” appears to precede antigen (Ag) uptake by B cells. The mature B cell synapse is characterized by a central cluster of BCR/Ag molecular complexes surrounded by a ring of LFA-1/ICAM-1 complexes. Recent experimental evidence shows receptor clustering in B cells can occur via mechanical or signaling-driven processes. An alternative mechanism of diffusion and affinity-dependent binding has been proposed to explain synapse formation in the absence of signaling-driven processes. In this work, we investigated the biophysical mechanisms that drive immunological synapse formation in B cells across the physiological range of BCR affinity (KA~10-10 M) through computational modeling. Our computational approach is based on stochastic simulation of diffusion and reaction events with a clearly defined mapping between our model’s probabilistic parameters and their physical equivalents. We show that a diffusion-and-binding mechanism is sufficient to drive synapse formation only at low BCR affinity and for a relatively stiff B cell membrane that undergoes little deformation. We thus predict the need for alternative mechanisms: a difference in the mechanical properties of BCR/Ag and LFA-1/ICAM-1 bonds and/or signaling driven processes.
منابع مشابه
Mechanisms of B-cell synapse formation predicted by Monte Carlo simulation.
The clustering of B-cell receptor (BCR) molecules and the formation of the protein segregation structure known as the "immunological synapse" at the contact region between B cells and antigen presenting cells appears to precede antigen (Ag) uptake by B cells. The mature B-cell synapse is characterized by a central cluster of BCR/Ag molecular complexes surrounded by a ring of LFA-1/ICAM-1 comple...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملSpike timing dependent plasticity: mechanisms, significance, and controversies
Long-term modification of synaptic strength is one of the basic mechanisms of memory formation and activity-dependent refinement of neural circuits. This idea was purposed by Hebb to provide a basis for the formation of a cell assembly. Repetitive correlated activity of pre-synaptic and post-synaptic neurons can induce long-lasting synaptic strength modification, the direction and extent of whi...
متن کاملStudy of buffer effects on the grouping efficacy measure of stochastic cell formation problem
This paper deals the stochastic cell formation problem (SCFP). The paper presents a new nonlinear integer programming model for the SCFP in which the effect of buffer size on the grouping efficacy of cells has been investigated. The objective function is the maximization of the grouping efficacy of cells. A chance constraint is applied to explore the effect of buffer on the SCFP. Processing tim...
متن کاملA stochastic model for the cell formation problem considering machine reliability
This paper presents a new mathematical model to solve cell formation problem in cellular manufacturing systems, where inter-arrival time, processing time, and machine breakdown time are probabilistic. The objective function maximizes the number of operations of each part with more arrival rate within one cell. Because a queue behind each machine; queuing theory is used to formulate the model. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006